Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132089, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705331

RESUMO

Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.

2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746287

RESUMO

Viral infection induces production of type I interferons and expression of interferon-stimulated genes (ISGs) that play key roles in inhibiting viral infection. Here, we show that the ISG guanylate-binding protein 5 (GBP5) inhibits N-linked glycosylation of key proteins in multiple viruses, including SARS-CoV-2 spike protein. GBP5 binds to accessory subunits of the host oligosaccharyltransferase (OST) complex and blocks its interaction with the spike protein, which results in misfolding and retention of spike protein in the endoplasmic reticulum likely due to decreased N -glycan transfer, and reduces the assembly and release of infectious virions. Consistent with these observations, pharmacological inhibition of the OST complex with NGI-1 potently inhibits glycosylation of other viral proteins, including MERS-CoV spike protein, HIV-1 gp160, and IAV hemagglutinin, and prevents the production of infectious virions. Our results identify a novel strategy by which ISGs restrict virus infection and provide a rationale for targeting glycosylation as a broad antiviral therapeutic strategy. Highlights: The interferon-stimulated gene GBP5 is induced by SARS-CoV-2 infection in vitro and in vivo.ER-localized GBP5 restricts N-linked glycosylation of SARS-CoV-2 spike protein, leading to protein misfolding and preventing transport to the Golgi apparatus.GBP5 binds to OST complex accessory proteins and potentially blocks access of the catalytic subunit to the spike protein.GBP5 inhibits N-glycosylation of key proteins in multiple viruses, including SARS-CoV-2Pharmacological inhibition of OST blocks host cell infection by SARS-CoV-2, variants of concern, HIV-1, and IAV. Significance: Viral infection induces production of type I interferons and expression of interferon-stimulated genes (ISGs) that play key roles in inhibiting viral infection. We found that the interferon-stimulated gene GBP5 is induced by SARS-CoV-2 infection in vitro and in vivo. GBP5 inhibits N-glycosylation of key proteins in multiple viruses, including SARS-CoV-2. Importantly, pharmacological inhibition of Oligosaccharyltransferase (OST) Complex blocks host cell infection by SARS-CoV-2, variants of concern, HIV-1, and IAV, indicating future translational application of our findings.

3.
PLoS One ; 19(4): e0300524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635805

RESUMO

To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas Combinadas , Anticorpos Neutralizantes , Nanovacinas , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA , Lipídeos , Anticorpos Antivirais
4.
Analyst ; 149(6): 1807-1816, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38334483

RESUMO

Tetrabromobisphenol A (TBBPA) has attracted a great deal of attention due to its side effects and potential bioaccumulation properties. It is of great importance to construct and develop novel electrochemical sensors for the sensitive and selective detection of TBBPA. In the present study, cobalt (Co) based metal-organic frameworks (MOFs) were synthesized on carbon cloth (CC) by using cobalt nitrate hexahydrate and 2-methylimidazole. The morphological characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that Co-MOFs/CC have a leaf-like structure and abundant surface functional groups. The electrochemical properties of the sensor were investigated by differential pulse voltammetry (DPV). The effects of different ratios of metal ions to organic ligands, reaction temperature, time, concentration, pH value of the electrolyte, and incubation time on the oxidation peak current of TBBPA were studied. Under the optimal conditions, the linear range of the designed sensor was 0.1 µM-100 µM, and the limit of detection was 40 nM. The proposed sensor is simple, of low cost and efficient, which can greatly facilitate the detection tasks of environmental monitoring workers.

5.
Sci Rep ; 14(1): 4465, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396011

RESUMO

The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.


Assuntos
Lesões das Artérias Carótidas , Células Progenitoras Endoteliais , Exossomos , Animais , Ratos , Proteína X Associada a bcl-2/metabolismo , Lesões das Artérias Carótidas/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Hiperplasia/metabolismo , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
J Ethnopharmacol ; 326: 117972, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403005

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY: This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS: In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1ß (IL-1ß) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS: PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1ß and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.


Assuntos
Ácido Aspártico , Interleucina-18 , Camundongos , Animais , Ratos , Privação do Sono , Proteína 3 que Contém Domínio de Pirina da Família NLR , 5-Hidroxitriptofano , Serotonina , Sono , Transdução de Sinais , Neurônios , Transtornos da Memória/tratamento farmacológico , Ácido gama-Aminobutírico , Caspase 1
7.
JMIR Res Protoc ; 13: e52820, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38238645

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is reputedly the most common musculoskeletal disease of the lower limbs and the main cause of pain and disability among older individuals. Pain is the most significant and widespread symptom of KOA. The descending pain inhibitory system has a cardinal role in normal pain consciousness, and its malfunction may be one of the pathophysiological mechanisms in KOA. Crucially, the rostral ventromedial medulla (RVM) and periaqueductal gray (PAG), as important components of the descending pain inhibitory system, directly modulate the activity of the spinal neurons involved in pain transmission. Tuina, a manual therapy, is effective and safe for reducing clinical symptoms of KOA; however, the mechanism that influences pain through the descending pain inhibitory system in KOA is unclear. OBJECTIVE: This study aims to investigate the modulatory implications of Tuina on the RVM and PAG, which have critical roles in the descending pain inhibitory system in patients with KOA. METHODS: This randomized controlled parallel trial will be conducted at the Tuina Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine (Zhengzhou, China). Patients with KOA will be randomly assigned (1:1) to 6 weeks of health education or Tuina. All patients in both groups will accept a resting-state functional magnetic resonance scan at the beginning and end of the experiment, and the resting-state functional connectivity and the voxel-based morphometry analysis will be performed to detect the RVM and PAG function and structure changes. The clinical outcome assessments will be (1) the pressure pain thresholds, (2) the Numerical Rating Scale, (3) the Hamilton Depression Scale (HAMD), and (4) the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Considering that this trial is a study of resting-state functional magnetic resonance imaging technology, resting-state functional connectivity and voxel-based morphometry are the primary outcomes, and clinical outcome assessments are secondary outcomes. Adverse events will be documented and assessed throughout. All main analyses will be carried out on the basis of the intention-to-treat principle. The outcome evaluators and data statisticians will be masked to the treatment group assignment to reduce the risk of bias. RESULTS: This trial was approved by the ethics committee of the Third Affiliated Hospital of Henan University of Chinese Medicine. Enrollment began in December 2023, and the results of this trial are expected to be submitted for publication in May 2025. CONCLUSIONS: This trial will identify a possible relationship between function and structure changes of RVM and PAG and the improvement of clinical variables, elucidating the effect of Tuina on the descending pain inhibitory system of patients with KOA. This trial will provide much-needed knowledge for Tuina for patients with KOA. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300070289; https://www.chictr.org.cn/showproj.html?proj=182570. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/52820.

8.
Complement Ther Med ; 79: 103005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972695

RESUMO

OBJECTIVES: Tuina is an effective complementary and alternative therapy. However, no bibliometric analysis has explored the global research status and emerging trends of tuina. Therefore, our study aimed to provide a perspective on the current state and frontier trends in the field. DESIGN: Bibliometric analysis SETTING: Tuina-related publications between January 1, 2003, and December 31, 2022, were obtained from the Web of Science Core Collection database. MAIN OUTCOME MEASURES: The knowledge graph software CiteSpace and VOSViewer were used to quantitatively analyse annual trends in annual publication volume, journals, countries, institutions, authors, cited references, and keywords. RESULTS: Overall, 1877 articles were obtained. Consequently, the number of annual publications in tuina gradually increased. China published the most articles (1402 articles, 58.01%), followed by the Chinese Academy of Sciences (110 articles, 2.57%). Original and review articles were the two main types of publications. Photonics Research ranked first (101 articles, 5.38%) as the most influential affiliate and productive journal. These articles come from 8423 authors, among whom Min Fang published the most publications, and Ernst E was co-cited most often. According to the keyword co-occurrence analysis, the new research frontiers were meta-analyses. CONCLUSION: This comprehensive bibliometric study analysed the publications on tuina and presented them visually, revealing new research trends, pivotal points, research hotspots, and frontiers. Prospective strategies and potential directions for further studies were also provided.


Assuntos
Bibliometria , Massagem , Medicina Tradicional Chinesa , China , Massagem/métodos , Massagem/tendências , Medicina Tradicional Chinesa/métodos , Medicina Tradicional Chinesa/tendências , Reconhecimento Automatizado de Padrão , Estudos Prospectivos
9.
Environ Sci Pollut Res Int ; 30(57): 120805-120819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945954

RESUMO

High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil ß-glucosidase (ß-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.


Assuntos
Arsênio , Brassica , Microbiota , Poluentes do Solo , Humanos , Fosfatos/análise , Arsênio/análise , Rizosfera , Fungos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
10.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014066

RESUMO

Alphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV) 1 . The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

11.
ISME Commun ; 3(1): 121, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985704

RESUMO

Enzyme allocation (or synthesis) is a crucial microbial trait that mediates soil biogeochemical cycles and their responses to climate change. However, few microbial ecological models address this trait, particularly concerning multiple enzyme functional groups that regulate complex biogeochemical processes. Here, we aim to fill this gap by developing a COmpetitive Dynamic Enzyme ALlocation (CODEAL) scheme for six enzyme groups that act as indicators of inorganic nitrogen (N) transformations in the Microbial-ENzyme Decomposition (MEND) model. This allocation scheme employs time-variant allocation coefficients for each enzyme group, fostering mutual competition among the multiple groups. We show that the principle of enzyme cost minimization is achieved by using the substrate's saturation level as the factor for enzyme allocation, resulting in an enzyme-efficient pathway with minimal enzyme cost per unit metabolic flux. It suggests that the relative substrate availability affects the trade-off between enzyme production and metabolic flux. Our research has the potential to give insights into the nuanced dynamics of the N cycle and inspire the evolving landscape of enzyme-mediated biogeochemical processes in microbial ecological modeling, which is gaining increasing attention.

12.
Biomed Opt Express ; 14(9): 4929-4946, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791269

RESUMO

We present the development of SpeCamX, a mobile application that enables an unmodified smartphone into a multispectral imager. Multispectral imaging provides detailed spectral information about objects or scenes, but its accessibility has been limited due to its specialized requirements for the device. SpeCamX overcomes this limitation by utilizing the RGB photographs captured by smartphones and converting them into multispectral images spanning a range of 420 to 680 nm without a need for internal modifications or external attachments. The app also includes plugin functions for extracting medical information from the resulting multispectral data cube. In a clinical study, SpeCamX was used to implement an augmented smartphone bilirubinometer, predicting blood bilirubin levels (BBL) with superior performance in accuracy, efficiency and stability compared to default smartphone cameras. This innovative technology democratizes multispectral imaging, making it accessible to a wider audience and opening new possibilities for both medical and non-medical applications.

13.
Biomed Opt Express ; 14(9): 4507-4519, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791270

RESUMO

We report a method and system of micro-motion imaging (µMI) to realize non-contact measurement of neck pulses. The system employs a 16-bit camera to acquire videos of the neck skin, containing reflectance variation caused by the neck pulses. Regional amplitudes and phases of pulse-induced reflection variation are then obtained by applying a lock-in amplification algorithm to the acquired videos. Composite masks are then generated using the raw frame, amplitude and phase maps, which are then used to guide the extraction of carotid pulse (CP) and jugular vein pulse (JVP) waveforms. Experimental results sufficiently demonstrate the feasibility of our method to extract CP and JVP waves. Compared with conventional methods, the proposed strategy works in a non-contact, non-invasive and self-guidance manner without a need for manual identification to operate, which is important for patient compliance and measurement objectivity. Considering the close relationship between neck pulses and cardiovascular diseases, for example, CA stenosis, the proposed µMI system and method may be useful in the development of early screening tools for potential cardiovascular diseases.

14.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4164-4172, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802785

RESUMO

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , LDL-Colesterol , Hiperplasia , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , RNA Mensageiro
15.
J Thorac Dis ; 15(9): 4885-4895, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37868897

RESUMO

Background: Lung cancer is a malignant tumor associated with high morbidity and mortality. Yiqi Yangjing recipe (YYR) is a formula of traditional Chinese medicine (TCM) that is commonly used for the treatment of lung cancer with good clinical efficacy. The specific anti-cancer mechanism of YYR is still unknown. We need to embark on a more in-depth pharmacological study of YYR to determine the complex compound ingredients, which could be promoted in clinical practice to achieve efficacy in prolonging recurrent metastasis of lung cancer. Methods: The cytotoxic effects of YYR on A549 cells were evaluated by Cell Counting Kit-8 (CCK-8) assay. The PFKFB3-under-expressed and overexpressed A549 cell lines were constructed via PFK15 treatment and transfection, respectively. The effects of YYR on PFKFB3 messenger RNA (mRNA) and protein expression were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. The pro-apoptotic and anti-glycolytic abilities of YYR were measured using flow cytometry assay and hippocampal XF96 extracellular flux analyzer. An in vivo tumorigenicity assay was performed on nude mice to confirm the anti-cancer effects of YYR. Results: YYR has a noticeable cytotoxic activity on A549 cells, with the treatment with both YYR and PFK15 significantly inducing apoptosis. YYR and PFK15 treatment reduced the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) in A549 cells. Similar to PFK15, YYR can down-regulate PFKFB3 expression, and PFKFB3 overexpression suppressed the apoptosis, which was reversed by YYR. Animal experiments confirmed that YYR was able to inhibit tumor growth, induce tumor cell apoptosis, and down-regulate PFKFB3 in tumor tissues. Conclusions: This study demonstrated that YYR promoted lung cancer cell apoptosis and inhibited energy metabolism by targeting PFKFB3. Furthermore, we believe that YYR may be a suitable supplement or alternative drug for lung cancer treatment.

16.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836314

RESUMO

In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL or no IPL, the sample with the dual IPL of TaON/GeON exhibits the best performance: low interface-state density (1.31 × 1012 cm-2 eV-1), small gate leakage current density (1.62 × 10-5 A cm-2 at Vfb + 1 V) and large equivalent dielectric constant (18.0). These exceptional results can be attributed to the effective blocking action of the TaON/GeON dual IPL. It efficiently prevents the out-diffusion of Ga/As atoms and the in-diffusion of oxygen, thereby safeguarding the gate stack against degradation. Additionally, the insertion of the thin TaON layer successfully hinders the interdiffusion of Zr/Ge atoms, thus averting any reaction between Zr and Ge. Consequently, the occurrence of defects in the gate stack and at/near the GaAs surface is significantly reduced.

17.
J Pain Res ; 16: 2955-2970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664489

RESUMO

Purpose: Tuina is a nonpharmacological modality for pain relief that has found applications in the treatment of several pain disorders. Tuina analgesia has been increasingly studied; however, few studies have focused on the previous publication trends, prevalent research areas, collaborations, and other factors. This study aimed to systematically analyze research trends and hot topics in the field of tuina analgesia over the past 30 years, using bibliometric analysis, to inform future research. Methods: The web of science database was searched for literature on tuina analgesia from 1992-2023. VOSviewer and CiteSpace were used to analyze annual publication volumes, countries, institutions, journals and CO-cited journals, authorship, articles, and keywords and their relevance, and to perform co-occurrence and clustering analyses. Results: A total of 621 literature elements were included in the analysis. The annual volume of publications has increased steadily in recent years. The top three high-yielding countries were the United States, China, and Canada, respectively. The top three institutional outputs were from Shanghai University of Chinese medicine, Beijing University of Chinese medicine, and McMaster University, respectively. Notably, there was an imbalance between national outputs and centrality, with higher centrality in the United States (0.35) and lower in China (0.01). Cochrane Database of Systematic Reviews was the journal with the most publications (22), and PAIN was the most influential co-cited journals (publications=306). Moreover, current research in this field was dominated by studies on Tuina for relieving postoperative pain, the effectiveness of Tuina analgesia, and Tuina treatment for pain accompanied by anxiety. Conclusion: This study employed bibliometrics to analyze the literature on Tuina for pain treatment over a 30-year period, identifying potential collaborators, institutions, hot topics, and future research trends that will inform potential future directions.

18.
Bioresour Technol ; 388: 129780, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739185

RESUMO

In this study, ß-CD was used as a receptor to prepare three novel SDES, which were used to pretreat corn stalks for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. It was found that GA-residue had a high cellulose retention ratio (94.63%) and the highest lignin removal ratio (61.78%). Besides, the yield of carbohydrates in bio-oil was increased from 0.63% to 49.37%, and fluorescent lignin was prepared for explosion detection, fluorescent film, and information encryption. It was confirmed that the weak interaction between ß-CD and HBDs or dimer was mainly performed by hydrogen bond and van der Waals force. The minimum frontier orbital energy difference ΔEU (0.1976 a.u.) and high binding energy (-5456.71 kJ/mol) between molecules were calculated by DFT. Moreover, the mechanism of biomass pretreatment was explored. The green and efficient SDES developed in this study were of great significance for biomass pretreatment and efficient utilization of components.

19.
Environ Pollut ; 337: 122381, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586690

RESUMO

The Xikuangshan (XKS) mine was selected for a comprehensive Sb-related hydrogeochemical study because of its significant Sb contamination in water systems. Hydrochemical data, specifically multi-isotope (H, O, S, and Sr) data, were conducted to elucidate the primary sources and migration processes of Sb responsible for water system contamination. At the XKS Sb mine, water is near-neutral to alkaline and is characterized by high concentrations of SO42- and Sb. Sb occurs as Sb(OH)6- (the dominant species) in these oxidized waters. The hydrochemistry is mainly controlled by carbonate dissolution and silicate weathering. δ2HH2O and δ18OH2O values indicate that the infiltration recharge of mine water and mining activities regulate the migration of Sb in groundwater. δ34SSO4 and δ18OSO4 values indicate that dissolved SO42- and Sb primarily come from stibnite oxidation, bacterial SO42- reduction has either not occurred or is extremely weak, and the reductive dissolution of Fe (III) hydroxides does not significantly affect Sb migration in water. The 87Sr/86Sr ratios further indicate that the discharge of solid mine wastes leaching and smelting water is a crucial source of Sb contamination in groundwater. In addition, the relationship between δ34SSO4 and δ87Sr values suggests the complexity of the contamination source and migration of Sb in water. Finally, a robust conceptual hydrogeochemical model was developed using isotopic tools in combination with detailed hydrogeological and hydrochemistry characterization to describe the contamination source and migration of Sb in water systems at the XKS Sb mine.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antimônio/análise , Monitoramento Ambiental , Água , Poluentes Químicos da Água/análise , Isótopos , Água Subterrânea/química , China
20.
BMC Microbiol ; 23(1): 218, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573330

RESUMO

BACKGROUND: The most serious challenges in medicinal 'Sanghuang' mushroom production are the fungal diseases caused by various molds. Application of biological agents has been regarded as a potential crop disease management strategy. Here, the soil microbiome associated with 'Sanghuang' mushroom affected by fungal diseases grown under field cultivation (FC) and hanging cultivation (HC) was characterized using culture-dependent and culture-independent methods. RESULTS: A total of 12,525 operational taxonomic units (OTUs) and 168 pure cultures were obtained using high-throughput sequencing and a culture-dependent method, respectively. From high-throughput sequencing, we found that HC samples had more OTUs, higher α-diversity, and greater microbial community complexity than FC samples. Analysis of ß-diversity divided the soil microbes into two groups according to cultivation mode. Basidiomycota (48.6%) and Ascomycota (46.5%) were the two dominant fungal phyla in FC samples, with the representative genera Trichoderma (56.3%), Coprinellus (29.4%) and Discosia (4.8%), while only the phylum Ascomycota (84.5%) was predominant in HC samples, with the representative genera Discosia (34.0%), Trichoderma (30.2%), Penicillium (14.9%), and Aspergillus (7.8%). Notably, Trichoderma was predominant in both the culture-independent and culture-dependent analyses, with Trichoderma sp. FZ0005 showing high host pathogenicity. Among the 87 culturable bacteria, 15 exhibited varying extents of antifungal activity against Trichoderma sp. FZ0005, with three strains of Bacillus spp. (HX0037, HX0016, and HX0039) showing outstanding antifungal capacity. CONCLUSIONS: Overall, our results suggest that Trichoderma is the major causal agent of 'Sanghuang' fungal diseases and that Bacillus strains may be used as biocontrol agents in 'Sanghuang' cultivation.


Assuntos
Agaricales , Ascomicetos , Bacillus , Microbiota , Micoses , Trichoderma , Agaricales/genética , Solo/química , Antifúngicos , Microbiota/genética , Trichoderma/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA